Popular

Saturday, 25 August 2012

C Aptitude


C Aptitude
Predict the output or error(s) for the following:
1.    void main()
{
            int  const * p=5;
            printf("%d",++(*p));
}

Answer:

Compiler error: Cannot modify a constant value.
Explanation:   
p is a pointer to a "constant integer". But we tried to change the value of the "constant integer".
2.    main()
{
            char s[ ]="man";
            int i;
            for(i=0;s[ i ];i++)
            printf("\n%c%c%c%c",s[ i ],*(s+i),*(i+s),i[s]);
}

Answer:
                        mmmm
                       aaaa
                       nnnn
Explanation:
s[i], *(i+s), *(s+i), i[s] are all different ways of expressing the same idea. Generally  array name is the base address for that array. Here s is the base address. i is the index number/displacement from the base address. So, indirecting it with * is same as s[i]. i[s] may be surprising. But in the  case of  C  it is same as s[i].
3.      main()
{
            float me = 1.1;
            double you = 1.1;
            if(me==you)
printf("I love U");
else
                        printf("I hate U");
}

Answer:
I hate U

Explanation:
For floating point numbers (float, double, long double) the values cannot be predicted exactly. Depending on the number of bytes, the precession with of the value  represented varies. Float takes 4 bytes and long double takes 10 bytes. So float stores 0.9 with less precision than long double.
Rule of Thumb:
Never compare or at-least be cautious when using floating point numbers with relational operators (== , >, <, <=, >=,!= ) . 
4.      main()
            {
            static int var = 5;
            printf("%d ",var--);
            if(var)
                        main();
            }

Answer:
5 4 3 2 1

Explanation:
When static storage class is given, it is initialized once. The change in the value of a static variable is retained even between the function calls. Main is also treated like any other ordinary function, which can be called recursively. 
5.      main()
{
             int c[ ]={2.8,3.4,4,6.7,5};
             int j,*p=c,*q=c;
             for(j=0;j<5;j++) {
                        printf(" %d ",*c);
                        ++q;     }
             for(j=0;j<5;j++){
printf(" %d ",*p);
++p;     }
}

Answer:
                        2 2 2 2 2 2 3 4 6 5

Explanation:
Initially pointer c is assigned to both p and q. In the first loop, since only q is incremented and not c , the value 2 will be printed 5 times. In second loop p itself is incremented. So the values 2 3 4 6 5 will be printed.
6.      main()
{
            extern int i;
            i=20;
printf("%d",i);
}

Answer: 
Linker Error : Undefined symbol '_i'
Explanation:
                        extern storage class in the following declaration,
                                    extern int i;
specifies to the compiler that the memory for i is allocated in some other program and that address will be given to the current program at the time of linking. But linker finds that no other variable of name i is available in any other program with memory space allocated for it. Hence a linker error has occurred .
7.      main()
{
            int i=-1,j=-1,k=0,l=2,m;
            m=i++&&j++&&k++||l++;
            printf("%d %d %d %d %d",i,j,k,l,m);
}

Answer:
                        0 0 1 3 1

Explanation :
Logical operations always give a result of 1 or 0 . And also the logical AND (&&) operator has higher priority over the logical OR (||) operator. So the expression  ‘i++ && j++ && k++’ is executed first. The result of this expression is 0    (-1 && -1 && 0 = 0). Now the expression is 0 || 2 which evaluates to 1 (because OR operator always gives 1 except for ‘0 || 0’ combination- for which it gives 0). So the value of m is 1. The values of other variables are also incremented by 1.
8.      main()
{
            char *p;
            printf("%d %d ",sizeof(*p),sizeof(p));
}

Answer:
                        1 2

Explanation:
The sizeof() operator gives the number of bytes taken by its operand. P is a character pointer, which needs one byte for storing its value (a character). Hence sizeof(*p) gives a value of 1. Since it needs two bytes to store the address of the character pointer sizeof(p) gives 2.
9.      main()
{
            int i=3;
            switch(i)
             {
                default:printf("zero");
                case 1: printf("one");
                           break;
               case 2:printf("two");
                          break;
              case 3: printf("three");
                          break;
              } 
}

Answer :
three

Explanation :
The default case can be placed anywhere inside the loop. It is executed only when all other cases doesn't match.
10.      main()
{
              printf("%x",-1<<4);
}

Answer:
fff0

Explanation :
-1 is internally represented as all 1's. When left shifted four times the least significant 4 bits are filled with 0's.The %x format specifier specifies that the integer value be printed as a hexadecimal value.
11.      main()
{
            char string[]="Hello World";
            display(string);
}
void display(char *string)
{
            printf("%s",string);
}

Answer:
Compiler Error : Type mismatch in redeclaration of function display

Explanation :
In third line, when the function display is encountered, the compiler doesn't know anything about the function display. It assumes the arguments and return types to be integers, (which is the default type). When it sees the actual function display, the arguments and type contradicts with what it has assumed previously. Hence a compile time error occurs.
12.      main()
{
            int c=- -2;
            printf("c=%d",c);
}

Answer:
                                    c=2;

Explanation:
Here unary minus (or negation) operator is used twice. Same maths  rules applies, ie. minus * minus= plus.
Note:
However you cannot give like --2. Because -- operator can  only be applied to variables as a decrement operator (eg., i--). 2 is a constant and not a variable.
13.      #define int char
main()
{
            int i=65;
            printf("sizeof(i)=%d",sizeof(i));
}

Answer:
                        sizeof(i)=1

Explanation:
Since the #define replaces the string  int by the macro char
14.      main()
{
int i=10;
i=!i>14;
Printf ("i=%d",i);
}

Answer:
i=0

Explanation:
In the expression !i>14 , NOT (!) operator has more precedence than ‘ >’ symbol.  ! is a unary logical operator. !i (!10) is 0 (not of true is false).  0>14 is false (zero).
15.      #include
main()
{
char s[]={'a','b','c','\n','c','\0'};
char *p,*str,*str1;
p=&s[3];
str=p;
str1=s;
printf("%d",++*p + ++*str1-32);
}

Answer:
77       

Explanation:
p is pointing to character '\n'. str1 is pointing to character 'a' ++*p. "p is pointing to '\n' and that is incremented by one." the ASCII value of '\n' is 10, which is then incremented to 11. The value of ++*p is 11. ++*str1, str1 is pointing to 'a' that is incremented by 1 and it becomes 'b'. ASCII value of 'b' is 98.
 Now performing (11 + 98 – 32), we get 77("M");
 So we get the output 77 :: "M" (Ascii is 77).
16.      #include
main()
{
int a[2][2][2] = { {10,2,3,4}, {5,6,7,8}  };
int *p,*q;
p=&a[2][2][2];
*q=***a;
printf("%d----%d",*p,*q);
}

Answer:
SomeGarbageValue---1

Explanation:
p=&a[2][2][2]  you declare only two 2D arrays, but you are trying to access the third 2D(which you are not declared) it will print garbage values. *q=***a starting address of a is assigned integer pointer. Now q is pointing to starting address of a. If you print *q, it will print first element of 3D array.
17.      #include
main()
{
struct xx
{
      int x=3;
      char name[]="hello";
 };
struct xx *s;
printf("%d",s->x);
printf("%s",s->name);
}

Answer:
Compiler Error

Explanation:
You should not initialize variables in declaration
18.      #include
main()
{
struct xx
{
int x;
struct yy
{
char s;
            struct xx *p;
};
struct yy *q;
};
}

Answer:
Compiler Error

Explanation:
The structure yy is nested within structure xx. Hence, the elements are of yy are to be accessed through the instance of structure xx, which needs an instance of yy to be known. If the instance is created after defining the structure the compiler will not know about the instance relative to xx. Hence for nested structure yy you have to declare member.
19.      main()
{
printf("\nab");
printf("\bsi");
printf("\rha");
}

Answer:
hai

Explanation:
\n  - newline
\b  - backspace
\r  - linefeed
20.      main()
{
int i=5;
printf("%d%d%d%d%d%d",i++,i--,++i,--i,i);
}

Answer:
45545

Explanation:
The arguments in a function call are pushed into the stack from left to right. The evaluation is by popping out from the stack. and the  evaluation is from right to left, hence the result.
21.      #define square(x) x*x
main()
{
int i;
i = 64/square(4);
printf("%d",i);
}

Answer:
64

Explanation:
the macro call square(4) will substituted by 4*4 so the expression becomes i = 64/4*4 . Since / and * has equal priority the expression will be evaluated as (64/4)*4 i.e. 16*4 = 64
22.      main()
{
char *p="hai friends",*p1;
p1=p;
while(*p!='\0') ++*p++;
printf("%s   %s",p,p1);
}

Answer:
ibj!gsjfoet

Explanation:
                        ++*p++ will be parse in the given order
Ø  *p that is value at the location currently pointed by p will be taken
Ø  ++*p the retrieved value will be incremented
Ø  when ; is encountered the location will be incremented that is p++ will be executed
Hence, in the while loop initial value pointed by p is ‘h’, which is changed to ‘i’ by executing ++*p and pointer moves to point, ‘a’ which is similarly changed to ‘b’ and so on. Similarly blank space is converted to ‘!’. Thus, we obtain value in p becomes “ibj!gsjfoet” and since p reaches ‘\0’ and p1 points to p thus p1doesnot print anything.
23.      #include
#define a 10
main()
{
#define a 50
printf("%d",a);
}

Answer:
50

Explanation:
The preprocessor directives can be redefined anywhere in the program. So the most recently assigned value will be taken.
24.      #define clrscr() 100
main()
{
clrscr();
printf("%d\n",clrscr());
}

Answer:
100

Explanation:
Preprocessor executes as a seperate pass before the execution of the compiler. So textual replacement of clrscr() to 100 occurs.The input  program to compiler looks like this :
                        main()
                        {
                             100;
                             printf("%d\n",100);
                        }
            Note:  
100; is an executable statement but with no action. So it doesn't give any problem
25.   main()
{
printf("%p",main);
}

Answer:
                        Some address will be printed.

Explanation:
            Function names are just addresses (just like array names are addresses).
main() is also a function. So the address of function main will be printed. %p in printf specifies that the argument is an address. They are printed as hexadecimal numbers.
26.       main()
{
clrscr();
}
clrscr();

           
Answer:
No output/error

Explanation:
The first clrscr() occurs inside a function. So it becomes a function call. In the second clrscr(); is a function declaration (because it is not inside any function).
27.       enum colors {BLACK,BLUE,GREEN}
 main()
{
 
 printf("%d..%d..%d",BLACK,BLUE,GREEN);
  
 return(1);
}

Answer:
0..1..2

Explanation:
enum assigns numbers starting from 0, if not explicitly defined.
28.       void main()
{
 char far *farther,*farthest;
 
 printf("%d..%d",sizeof(farther),sizeof(farthest));
  
 }

Answer:
4..2 

Explanation:
            the second pointer is of char type and not a far pointer
29.       main()
{
 int i=400,j=300;
 printf("%d..%d");
}

Answer:
400..300

Explanation:
printf takes the values of the first two assignments of the program. Any number of printf's may be given. All of them take only the first two values. If more number of assignments given in the program, then printf will take garbage values.
30.       main()
{
 char *p;
 p="Hello";
 printf("%c\n",*&*p);
}

Answer:
H

Explanation:
* is a dereference operator & is a reference  operator. They can be    applied any number of times provided it is meaningful. Here  p points to  the first character in the string "Hello". *p dereferences it and so its value is H. Again  & references it to an address and * dereferences it to the value H.
31.       main()
{
    int i=1;
    while (i<=5)
    {
       printf("%d",i);
       if (i>2)
              goto here;
       i++;
    }
}
fun()
{
   here:
     printf("PP");
}

Answer:
Compiler error: Undefined label 'here' in function main

Explanation:
Labels have functions scope, in other words The scope of the labels is limited to functions . The label 'here' is available in function fun() Hence it is not visible in function main.
32.       main()
{
   static char names[5][20]={"pascal","ada","cobol","fortran","perl"};
    int i;
    char *t;
    t=names[3];
    names[3]=names[4];
    names[4]=t;
    for (i=0;i<=4;i++)
           
printf("%s",names[i]);
}

Answer:
Compiler error: Lvalue required in function main

Explanation:
Array names are pointer constants. So it cannot be modified.
33.     void main()
{
            int i=5;
            printf("%d",i++ + ++i);
}

Answer:
Output Cannot be predicted  exactly.

Explanation:
Side effects are involved in the evaluation of   i
34.       void main()
{
            int i=5;
            printf("%d",i+++++i);
}

Answer:
Compiler Error

Explanation:
The expression i+++++i is parsed as i ++ ++ + i which is an illegal combination of operators.
35.       #include
main()
{
int i=1,j=2;
switch(i)
 {
 case 1:  printf("GOOD");
                break;
 case j:  printf("BAD");
               break;
 }
}

Answer:
Compiler Error: Constant expression required in function main.

Explanation:
The case statement can have only constant expressions (this implies that we cannot use variable names directly so an error).
            Note:
Enumerated types can be used in case statements.
36.    main()
{
int i;
printf("%d",scanf("%d",&i));  // value 10 is given as input here
}

Answer:
1

Explanation:
Scanf returns number of items successfully read and not 1/0.  Here 10 is given as input which should have been scanned successfully. So number of items read is 1.
37.       #define f(g,g2) g##g2
main()
{
int var12=100;
printf("%d",f(var,12));
            }


Answer:
100
38.      main()
{
int i=0;
 
for(;i++;printf("%d",i)) ;
printf("%d",i);
}

Answer:
            1

Explanation:
before entering into the for loop the checking condition is "evaluated". Here it evaluates to 0 (false) and comes out of the loop, and i is incremented (note the semicolon after the for loop).
39.       #include
main()
{
  char s[]={'a','b','c','\n','c','\0'};
  char *p,*str,*str1;
  p=&s[3];
  str=p;
  str1=s;
  printf("%d",++*p + ++*str1-32);
}

Answer:
M

Explanation:
p is pointing to character '\n'.str1 is pointing to character 'a' ++*p meAnswer:"p is pointing to '\n' and that is incremented by one." the ASCII value of '\n' is 10. then it is incremented to 11. the value of ++*p is 11. ++*str1 meAnswer:"str1 is pointing to 'a' that is incremented by 1 and it becomes 'b'. ASCII value of 'b' is 98. both 11 and 98 is added and result is subtracted from 32.
i.e. (11+98-32)=77("M");
40.       #include
main()
{
  struct xx
   {
      int x=3;
      char name[]="hello";
   };
struct xx *s=malloc(sizeof(struct xx));
printf("%d",s->x);
printf("%s",s->name);
}

Answer:
Compiler Error

Explanation:
Initialization should not be done for structure members inside the structure declaration
41.       #include
main()
{
struct xx
 {
              int x;
              struct yy
               {
                 char s;
                 struct xx *p;
               };
                         struct yy *q;
            };
            }


Answer:
Compiler Error

Explanation:
in the end of nested structure yy a member have to be declared
42.       main()
{
 extern int i;
 i=20;
 printf("%d",sizeof(i));
}

Answer:
Linker error: undefined symbol '_i'.

Explanation:
extern declaration specifies that the variable i is defined somewhere else. The compiler passes the external variable to be resolved by the linker. So compiler doesn't find an error. During linking the linker searches for the definition of i. Since it is not found the linker flags an error.
43.       main()
{
printf("%d", out);
}

int out=100;
Answer:
Compiler error: undefined symbol out in function main.

Explanation:
The rule is that a variable is available for use from the point of declaration. Even though a is a global variable, it is not available for main. Hence an error.
44.    main()
{
 extern out;
 printf("%d", out);
}
 int out=100;

Answer:
100     

            Explanation:  
This is the correct way of writing the previous program.
45.       main()
{
 show();
}
void show()
{
 printf("I'm the greatest");
}

Answer:
Compier error: Type mismatch in redeclaration of show.

Explanation:
When the compiler sees the function show it doesn't know anything about it. So the default return type (ie, int) is assumed. But when compiler sees the actual definition of show mismatch occurs since it is declared as void. Hence the error.
The solutions are as follows:
1. declare void show() in main() .
2. define show() before main().
3. declare extern void show() before the use of show().
46.  main( )
{
  int a[2][3][2] = {{{2,4},{7,8},{3,4}},{{2,2},{2,3},{3,4}}};
  printf(“%u %u %u %d \n”,a,*a,**a,***a);
        printf(“%u %u %u %d \n”,a+1,*a+1,**a+1,***a+1);
       }

Answer:
100, 100, 100, 2
114, 104, 102, 3
47.   main( )
{
  int a[ ] = {10,20,30,40,50},j,*p;
  for(j=0; j<5; j++)
    {
printf(“%d” ,*a);
a++;
    }
    p = a;
   for(j=0; j<5; j++)
      {
printf(“%d ” ,*p);
p++;
      }
 }

Answer:
Compiler error: lvalue required.
                       
Explanation:
Error is in line with statement a++. The operand must be an lvalue and may be of any of scalar type for the any operator, array name only when subscripted is an lvalue. Simply array name is a non-modifiable lvalue.
48.       main( )
{
 static int  a[ ]   = {0,1,2,3,4};
 int  *p[ ] = {a,a+1,a+2,a+3,a+4};
 int  **ptr =  p;
 ptr++;
 printf(“\n %d  %d  %d”, ptr-p, *ptr-a, **ptr);
 *ptr++;
 printf(“\n %d  %d  %d”, ptr-p, *ptr-a, **ptr);
 *++ptr;
 printf(“\n %d  %d  %d”, ptr-p, *ptr-a, **ptr);
 ++*ptr;
       printf(“\n %d  %d  %d”, ptr-p, *ptr-a, **ptr);
}

Answer:
            111
            222
            333
            344
49.       main( )
{
 void *vp;
 char ch = ‘g’, *cp = “goofy”;
 int j = 20;
 vp = &ch;
 printf(“%c”, *(char *)vp);
 vp = &j;
 printf(“%d”,*(int *)vp);
 vp = cp;
 printf(“%s”,(char *)vp + 3);
}

Answer:
            g20fy

Explanation:
Since a void pointer is used it can be type casted to any  other type pointer. vp = &ch  stores address of char ch and the next statement prints the value stored in vp after type casting it to the proper data type pointer. the output is ‘g’. Similarly  the output from second printf is ‘20’. The third printf statement type casts it to print the string from the 4th value hence the output is ‘fy’.
50.    main ( )
{
 static char *s[ ]  = {“black”, “white”, “yellow”, “violet”};
 char **ptr[ ] = {s+3, s+2, s+1, s}, ***p;
 p = ptr;
 **++p;
 printf(“%s”,*--*++p + 3);
}

Answer:
            ck

Explanation:
In this problem we have an array of char pointers pointing to start of 4 strings. Then we have ptr which is a pointer to a pointer of type char and a variable p which is a pointer to a pointer to a pointer of type char. p hold the initial value of ptr, i.e. p = s+3. The next statement increment value in p by 1 , thus now value of p =  s+2. In the printf statement the expression is evaluated *++p causes gets value s+1 then the pre decrement is executed and we get s+1 – 1 = s . the indirection operator now gets the value from the array of s and adds 3 to the starting address. The string is printed starting from this position. Thus, the output is ‘ck’.
51.    main()
{
 int  i, n;
 char *x = “girl”;
 n = strlen(x);
 *x = x[n];
 for(i=0; i

   {
printf(“%s\n”,x);
x++;
   }
 }

Answer:
(blank space)
irl
rl
l

Explanation:
Here a string (a pointer to char) is initialized with a value “girl”.  The strlen function returns the length of the string, thus n has a value 4. The next statement assigns value at the nth location (‘\0’) to the first location. Now the string becomes “\0irl” . Now the printf statement prints the string after each iteration it increments it starting position.  Loop starts from 0 to 4. The first time x[0] = ‘\0’ hence it prints nothing and pointer value is incremented. The second time it prints from x[1] i.e “irl” and the third time it prints “rl” and the last time it prints “l” and the loop terminates.
52.     int i,j;
            for(i=0;i<=10;i++)
            {
            j+=5;
            assert(i<5);
            }

Answer:
Runtime error: Abnormal program termination.
                                    assert failed (i<5), ,

Explanation:
asserts are used during debugging to make sure that certain conditions are satisfied. If assertion fails, the program will terminate reporting the same. After debugging use,
            #undef NDEBUG
and this will disable all the assertions from the source code. Assertion
is a good debugging tool to make use of. 
53.       main()
            {
            int i=-1;
            +i;
            printf("i = %d, +i = %d \n",i,+i);
            }


Answer:
 i = -1, +i = -1

Explanation:
Unary + is the only dummy operator in C. Where-ever it comes you can just ignore it just because it has no effect in the expressions (hence the name dummy operator).
54. What are the files which are automatically opened when a C file is executed?
Answer:
stdin, stdout, stderr (standard input,standard output,standard error).
55.  what will be the position of the file marker?
            a: fseek(ptr,0,SEEK_SET);
            b: fseek(ptr,0,SEEK_CUR);

Answer :
            a: The SEEK_SET sets the file position marker to the starting of the file.
                        b: The SEEK_CUR sets the file position marker to the current position
            of the file.
56.       main()
            {
            char name[10],s[12];
            scanf(" \"%[^\"]\"",s);
            }
            How scanf will execute?

Answer:
First it checks for the leading white space and discards it.Then it matches with a quotation mark and then it  reads all character upto another quotation mark.
57.       What is the problem with the following code segment?
            while ((fgets(receiving array,50,file_ptr)) != EOF)

                                    ;
Answer & Explanation:
fgets returns a pointer. So the correct end of file check is checking for != NULL.
58.   main()
            {
            main();
            }

Answer:
 Runtime error : Stack overflow.

Explanation:
main function calls itself again and again. Each time the function is called its return address is stored in the call stack. Since there is no condition to terminate the function call, the call stack overflows at runtime. So it terminates the program and results in an error.
59.      main()
            {
            char *cptr,c;
            void *vptr,v;
            c=10;  v=0;
            cptr=&c; vptr=&v;
            printf("%c%v",c,v);
            }

Answer:
Compiler error (at line number 4): size of v is Unknown.

Explanation:
You can create a variable of type void * but not of type void, since void is an empty type. In the second line you are creating variable vptr of type void * and v of type void hence an error.
60.       main()
            {
            char *str1="abcd";
            char str2[]="abcd";
            printf("%d %d %d",sizeof(str1),sizeof(str2),sizeof("abcd"));
            }

Answer:
2 5 5

Explanation:
In first sizeof, str1 is a character pointer so it gives you the size of the pointer variable. In second sizeof the name str2 indicates the name of the array whose size is 5 (including the '\0' termination character). The third sizeof is similar to the second one.
61.      main()
            {
            char not;
            not=!2;
            printf("%d",not);
            }

Answer:
0

Explanation:
! is a logical operator. In C the value 0 is considered to be the boolean value FALSE, and any non-zero value is considered to be the boolean value TRUE. Here 2 is a non-zero value so TRUE. !TRUE is FALSE (0) so it prints 0.
62.       #define FALSE -1
            #define TRUE   1
            #define NULL   0
            main() {
               if(NULL)
                        puts("NULL");
               else if(FALSE)
                        puts("TRUE");
               else
                        puts("FALSE");
               }

Answer:
TRUE

Explanation:
The input program to the compiler after processing by the preprocessor is,
            main(){
                        if(0)
                                    puts("NULL");
            else if(-1)
                                    puts("TRUE");
            else
                                    puts("FALSE");
                        }
Preprocessor doesn't replace the values given inside the double quotes. The check by if condition is boolean value false so it goes to else. In second if -1 is boolean value true hence "TRUE" is printed.
63.     main()
            {
            int k=1;
            printf("%d==1 is ""%s",k,k==1?"TRUE":"FALSE");
            }

Answer:
1==1 is TRUE

Explanation:
When two strings are placed together (or separated by white-space) they are concatenated (this is called as "stringization" operation). So the string is as if it is given as "%d==1 is %s". The conditional operator( ?: ) evaluates to "TRUE".
64.       main()
            {
            int y;
            scanf("%d",&y); // input given is 2000
            if( (y%4==0 && y%100 != 0) || y%100 == 0 )
                 printf("%d is a leap year");
            else
                 printf("%d is not a leap year");
            }

Answer:
2000 is a leap year

Explanation:
An ordinary program to check if leap year or not.
65.       #define max 5
            #define int arr1[max]
            main()
            {
            typedef char arr2[max];
            arr1 list={0,1,2,3,4};
            arr2 name="name";
            printf("%d %s",list[0],name);
            }

Answer:
Compiler error (in the line arr1 list = {0,1,2,3,4})

Explanation:
arr2 is declared of type array of size 5 of characters. So it can be used to declare the variable name of the type arr2. But it is not the case of arr1. Hence an error.
Rule of Thumb:
#defines are used for textual replacement whereas typedefs are used for declaring new types.
66.       int i=10;
            main()
            {
             extern int i;
              {
                 int i=20;
                        {
                         const volatile unsigned i=30;
                         printf("%d",i);
                        }
                  printf("%d",i);
               }
            printf("%d",i);
            }

Answer:
30,20,10

Explanation:
'{' introduces new block and thus new scope. In the innermost block i is declared as,
            const volatile unsigned
which is a valid declaration. i is assumed of type int. So printf prints 30. In the next block, i has value 20 and so printf prints 20. In the outermost block, i is declared as extern, so no storage space is allocated for it. After compilation is over the linker resolves it to global variable i (since it is the only variable visible there). So it prints i's value as 10.
67.       main()
            {
                int *j;
                {
                 int i=10;
                 j=&i;
                 }
                 printf("%d",*j);
}

Answer:
10

Explanation:
The variable i is a block level variable and the visibility is inside that block only. But the lifetime of i is lifetime of the function so it lives upto the exit of main function. Since the i is still allocated space, *j prints the value stored in i since j points i.
68.      main()
            {
            int i=-1;
            -i;
            printf("i = %d, -i = %d \n",i,-i);
            }

Answer:
i = -1, -i = 1

Explanation:
-i is executed and this execution doesn't affect the value of i. In printf first you just print the value of i. After that the value of the expression -i = -(-1) is printed.
69.       #include
main()
 {
   const int i=4;
   float j;
   j = ++i;
   printf("%d  %f", i,++j);
 }

Answer:
Compiler error

Explanation:
i is a constant. you cannot change the value of constant
70.       #include
main()
{
  int a[2][2][2] = { {10,2,3,4}, {5,6,7,8}  };
  int *p,*q;
  p=&a[2][2][2];
  *q=***a;
  printf("%d..%d",*p,*q);
}

Answer:
garbagevalue..1

Explanation:
p=&a[2][2][2]  you declare only two 2D arrays. but you are trying to access the third 2D(which you are not declared) it will print garbage values. *q=***a starting address of a is assigned integer pointer. now q is pointing to starting address of a.if you print *q meAnswer:it will print first element of 3D array.
71.      #include
main()
  {
    register i=5;
    char j[]= "hello";                    
     printf("%s  %d",j,i);
}

Answer:
hello 5

Explanation:
if you declare i as register  compiler will treat it as ordinary integer and it will take integer value. i value may be  stored  either in register  or in memory.
72.      main()
{
              int i=5,j=6,z;
              printf("%d",i+++j);
             }

Answer:
11

Explanation:
the expression i+++j is treated as (i++ + j)   

Wednesday, 15 August 2012

Computer & Internet Acronyms

                                                Computer & Internet Acronyms

Absolute Address
 Exact data memory location

ActiveX
 Tools to link applications to the web

Adware
 Software supported by advertisements

Analog
 Data represented by a continuous signal or information

Applet
 A Java program embedded in web page

Archie
 A program to find files on FTP servers

Avatar
 A character representing an internet user

Backbone
 Network mainline carrying data to smaller lines

Bandwidth
 Amount of data sent through network

Bit
 Smallest piece of information, that is, either 1 or 0

Bluetooth
 A short range wireless technology to connect electronic devices

Boot
To start a computer

Byte
 Sequence of information bits, which equals 8 bits

Cache
 Technically classifying, it stores recently visited web addresses,
web pages in hard disk/RAM/near processor, depending on cache types,
for fast retrieval

Captcha
 Response test that shows if the user is human or not
Centronics
36 pin parallel interface standard

Computer
  A machine that computes and is programmable

Cookie
 It is an internet term where the web server sent data records your
activities on websites. Some websites record & remember information
like your username and password, so you don’t have to type them again.

Crop
 Removing part of an image or photo

Cyber Bullying
 Harassing or threatening the young via cyberspace

Cyber Squatter
 Someone registering a domain name (without web pages) to sell it

Default
 When a user does not specify a setting, a preset value is used

Degauss
 Removing magnetism from a device

Digital
 Data represented in a series of zeros and ones

DirectX
 Mostly used in video games, it is a set of commands

Domain
 Network and computers connected to internet

Domain Name
 Website name

Driver
 A file that aids computer to connect with the hardware device

Dual-Core
 A CPU that has 2 processors in a chip

Embed
  Adding something from one document to another

Emoticons
  Text based faces/objects

Encryption
 Conversion of data into unreadable state

Ethernet
 A networking connection that uses coaxial cables
 
Exabyte
 Unit of data storage equalling to 2 to 60th power bytes

Fiber Optic
 Transmits information faster than copper wire

File Sharing
 Way of giving same file to many users by one server

Firewire
 High speed interface for connecting digital/electronic players to computers

Firmware
 Software programmed into hardware

Flash Drive
 Data storage device with less units

Gigabyte (GB)
 Equals 1024 megabytes

Gigahertz
 Measurement for computer processing speed. 1 gigahertz =1000 megahertz

Gnutella
 Internet file sharing network

Golden Master
 Final version of software program sent to make retail copies

Hacker
 A sly person who gains illegal access to other people’s computers

Hard Copy
 A document that is printed

Hardware
 Internal and external physical parts of a computer system

Heat Sink
 A metal alloy that absorbs heat from the processor

Host
 A network computer that acts as a server to other computers

Icon
 A tiny display representing files and folders

Infrared
 Red light invisible to naked eye and used in some wireless devices

Integrated Circuit
 A semiconductor chip

Internet
 A super highway network that connects smaller networks

Intranet
 Internal network within an organisation

IP Address
 It is internet protocol numbers ranging from 0 to 255 and separated
by 3 dots. It is assigned to a computer connected to internet by
Internet Service Provider (ISP).

Iteration
 Program process repetition

JavaScript
 A scripting language developed by Sun Microsystems
 
Joystick
 A device consisting of base and stick used in video games

Jumper
 Metal bridge to close electrical circuit

Kerberos
 Used to give secure network authentication

Kernel
 The foundation layer of an operating system

Keygen
 Key generator that automatically generates  a registration or serial #

Keylogger
 Keystrokes recording program that could be used by a hacker to find
out passwords

Kibibyte (KiB)
 Exact units of 1024 bytes

Kilobyte (KB)
 Estimated 1000 bytes or 1024 bytes depending on the content in use.
Hence, kilobyte has ambiguous units.

LAN
 Local area network that covers a small area

Leaf
 A file in hard disk

Limewire
 A free software that allows network users to share files

Linkedin
 Business social networking site

Linux
 Operating system developed by Linus Torvalds. It is a popular OS for
hosting web servers.

Macro
 A command/script in form of a key or symbol

Mainframe
 Big powerful computer processing mammoth volume at high speed

Malware
 Programs like virus & Trojan intended to damage computers

Media
 Data storage hardware like DVD, CD, HD

Meta Tag
 Tool to store details like keywords & contents of a web page

Memory Stick
 Sony’s flash memory cards

Name Server
 Web domain is referred to IP address by name server

Nanosecond
 A billionth of a second

Network
 A system of connected computers that send and receive data

Node
 Anything connected to a network

Null Value
 Something that has no value in programming

Offline
 State of computer devices that are neither turned on nor connected

Online
 State of computer devices that are turned on and connected

Operating System(OS)
 The significant program that runs the computer hardware

Oracle
 Database management program developed by Oracle Corporation

Overclock
 Technique to run a microprocessor faster than intended

Packet
 Amount of data sent from source to destination

Path
 Address of file

Peer to Peer (P2P)
 Connected workstations sharing files without a central server

Peripheral
 Any device attached to computer externally Phishing (i.e. Password harvesting fishing)
 Attempting to garner personal information via emails that seem genuine from banking and popular    
 websites


Primary Key
 A value that mainly identifies a record in a table

Quad-Core
 CPU having 4 separate processors in a chip

Query
 Request of a database in computer

Queue
 Series of tasks waiting to be done by programs

QWERTY
 Denotes standard keyboard because Q,W,E,R,T,Y keys are side by side
in the upper left row

Random Access Memory (RAM)
 Memory cells that make up memory module. Data is always loaded from
hard disk to RAM since it is faster to read from it. The best method
to make your computer work faster is to increase its RAM.

Raw Data
 Data that is not processed

Read-only Memory (ROM)
 Memory storing hardware information that is not lost when power is turned off

Real Time
 The moment, data is received, it is processed
Reboot
 To restart

Registry
 Database storing set up, software and hardware configuration information in Windows OS

Router
 A device connecting one local area network to another

Script
 A series of commands performed by a program

Serial Port
 Interface or connection to peripherals

Server
 Mainframe computer that serves other attached computers

Shadowing
 Method of using high speed RAM to make computer to work faster

Simplex
 Circuit that can either transmit or receive

Software
 A code or program that is read by computer

Spam
 Unnecessary emails

Static
 Non interactive web page

System
 Comprehensive inclusion of hardware, software & firmware items

Terabyte (TB)
 One trillion bytes

Terminal
 An internet computer screen

Throughout
 Data amount processed in a given time

Topology
 Physical and logical set up of a network

Trojan
 Dangerous virus loaded deceptively through a host program
Undo
 A command to cancel previous action

Universal Resource Locator (URL)
 Another term for internet address

Universal Serial Bus (USB)
 Computer port that is faster

Unix
 Web server operating system developed by AT & T

Upload
 To transfer files from local computer to web server/network

Virtual Memory
 Memory generated by  hard disk sectors when RAM is full

Virtual Reality
 Computer created illusion of reality

Virus
 A code or program designed to replicate and damage computers

Wave
 Microsoft’s waveform sound format

Weblog
 A personal journal or blog on the web

Workstation
 Any computer attached to internet

X2
 Technology to send higher data rates on old phone system

XMS(Extended Memory Specification)
 Procedure for using extended memory & area  of disk operating system (DOS)

Y2K
 Year 2000; the predicted Millennium Bug that flopped

Yottabyte (YB)
 Largest data storage unit, i.e. 1,000,000,000,000,000,000,000,000 bytes

Zero Day Exploit
 Computer security loophole issue & attack on it are known on same
day. Zero day left to release patch to fix it.

Zettabyte (ZB)
 1,000, 000, 000, 000, 000, 000, 000 bytes

Zipping
Compressing files to save space

Zune
  Digital music entertainment developed by Microsoft